Это важно.

Мы предлагаем удобный сервис для тех, кто хочет купить – продать: земельный участок, дом, квартиру, коммерческую или элитную недвижимость в Крыму. http://crimearealestat.ucoz.ru/ Перепечатка материалов разрешена только при условии прямой гиперссылки http://allmedicine.ucoz.com/

Поиск

Реклама

Statistics


Онлайн всего: 1
Гостей: 1
Пользователей: 0

Нас смотрят

free counters

Ссылки.

Мы предлагаем удобный сервис для тех, кто хочет купить – продать: земельный участок, дом, квартиру, коммерческую или элитную недвижимость в Крыму. http://crimearealestat.ucoz.ru/

Чат

Генетика бактерий и вирусов.
Молекулярная биология, изучающая фундаментальные основы жизни, является в значительной степени детищем микробиологии. В качестве основных объектов изучения в ней используют вирусы и бактерии, а основное направление- молекулярная генетика ос-нована на генетике бактерий и фагов.
Бактерии- удобный материал для генетики. Их отличает:
- относительная простота генома (сопокупности нуклеотидов хромосом);
- гаплоидность (один набор генов), исключающая доминантность признаков;
- различные интегрированные в хромосомы и обособленные фрагменты ДНК;
- половая дифференциация в виде донорских и реципиентных клеток;
- легкость культивирования, быстрота накопления биомасс.
Общие представления о генетике.
Ген- уникальная структурная единица наследственности, носитель и хранитель жиз-ни. Он имеет три фундаментальные функции.
1.Непрерывность наследственности- обеспечивается механизмом репликации ДНК.
2.Управление структурами и функциями организма - обеспечивается с помощью единого генетического кода из четырех оснований (А- аденин, Т- тимин, Г- гуанин, Ц- цитозин). Код триплетный, поскольку кодон- функциональная единица, кодирующая ами-нокислоту, состоит из трех оснований (букв).
3.Эволюция организмов- благодаря мутациям и генетическим рекомбинациям.
В узкоспециальном плане ген чаще всего представляет структурную единицу ДНК, расположение кодонов в которой детерминирует первичную структуру соответствующей полипептидной цепи (белка). Хромосома состоит из особых функциональных единиц- оперонов.
Основные этапы развития (усложнения) генетической системы можно представить в виде следующей схемы:
кодон  ген  оперон  геном вирусов и плазмид  хромосома прокариот (нук-леоид)  хромосомы эукариот (ядро).
Генетический материал бактерий.
1.Ядерные структуры бактерий- хроматиновые тельца или нуклеоиды (хромосом-ная ДНК). У бактерий одна замкнутая кольцевидная хромосома (до 4 тысяч отдельных ге-нов). Бактериальная клетка гаплоидна, а удвоение хромосомы (репликация ДНК) сопро-вождается делением клетки. Вегетативная репликация хромосомной (и плазмидной) ДНК обусловливает передачу генетической информации по вертикали- от родительской клетки- к дочерней. Передача генетической информации по горизонтали осуществляется различ-ными механизмами- в результате конъюгации, трансдукции, трансформации, сексдукции.
2.Внехромосомные молекулы ДНК представлены плазмидами, мигрирующими гене-тическими элементами- транспозонами и инсервационными (вставочными) или IS- по-следовательностями.
Плазмиды- экстрахромосомный генетический материал (ДНК), более просто устро-енные по сравнению с вирусами организмы, наделяющие бактерии дополнительными по-лезными свойствами. По молекулярной массе плазмиды значительно меньше хромосом-ной ДНК, содержат от 40 до 50 генов.
Их объединение в одно царство жизни с вирусами связано с наличием ряда общих свойств- отсутствием собственных систем мобилизации энергии и синтеза белка, саморе-пликацией генома, абсолютным внутриклеточным паразитизмом.
Их выделение в отдельный класс определяется существенными отличиями от виру-сов.
1.Среда их обитания- только бактерии (среди вирусов , кроме вирусов бактерий- бактериофагов имеются вирусы растений и животных).
2.Плазмиды сосуществуют с бактериями, наделяя их дополнительными свойствами. У вирусов эти свойства могут быть только у умеренных фагов при лизогении бактерий, чаще же всего вирусы вызывают отрицательный последствия, лизис клеток.
3.Геном представлен двунитевой ДНК.
4.Плазмиды представляют собой “голые” геномы, не имеющие никакой оболочки, их репликация не требует синтеза структурных белков и процессов самосборки.
Плазмиды могут распространяться по вертикали (при клеточном делении) и по гори-зонтали, прежде всего путем конъюгационного переноса. В зависимости от наличия или отсутствия механизма самопереноса (его контролируют гены tra- оперона) выделяют конъюгативные и неконъюгативные плазмиды. Плазмиды могут встраиваться в хромосо-му бактерий- интегративные плазмиды или находиться в виде отдельной структуры- ав-тономные плазмиды ( эписомы).
Классификация и биологическая роль плазмид.
Функциональная классификация плазмид основана на свойствах, которыми они наде-ляют бактерии. Среди них- способность продуцировать экзотоксины и ферменты, устой-чивость к лекарственным препаратам, синтез бактериоцинов.
Основные категории плазмид.
1.F- плазмиды - донорские функции, индуцируют деление (от fertility - плодови-тость). Интегрированные F - плазмиды- Hfr- плазмиды (высокой частоты рекомбинаций).
2.R- плазмиды (resistance) - устойчивость к лекарственным препаратам.
3.Col- плазмиды- синтез колицинов (бактериоцинов)- факторов конкуренции близ-кородственных бактерий (антогонизм). На этом свойстве основано колицинотипирование штаммов.
4.Hly- плазмиды- синтез гемолизинов.
5.Ent- плазмиды- синтез энтеротоксинов.
6.Tox- плазмиды- токсинообразование.
Близкородственные плазмиды не способны стабильно сосуществовать, что позволи-ло объединить их по степени родства в Inc- группы (incompatibility- несовместимость).
Биологическая роль плазмид многообразна, в том числе:
- контроль генетического обмена бактерий;
- контроль синтеза факторов патогенности;
- совершенствование защиты бактерий.
Бактерии для плазмид- среда обитания, плазмиды для них- переносимые между ни-ми дополнительные геномы с наборами генов, благоприятствующих сохранению бактерий в природе.
Мигрирующие генетические элементы - отдельные участки ДНК, способные опре-делять свой перенос между хромосомами или хромосомой и плазмидой с помощью фер-мента рекомбинации транспозазы. Простейшим их типом являются инсерционные после-довательности (IS- элементы) или вставочные элементы, несущие только один ген транспозазы, с помощью которой IS- элементы могут встраиваться в различные участки хромосомы. Их функции- координация взаимодействия плазмид, умеренных фагов, транспозонов и генофора для обеспечения репродукции, регуляция активности генов, ин-дукция мутаций. Величина IS- элементов не превышает 1500 пар оснований.
Транспозоны (Tn- элементы) включают до 25 тысяч пар нуклеотидов, содержат фрагмент ДНК, несущий специфические гены, и два Is- элемента. Каждый транспозон со-держит гены, привносящие важные для бактерии характеристики, как и плазмиды (мно-жественная устойчивость к антибиотикам, токсинообразование и т.д.). Транспозоны- са-моинтегрирующиеся фрагменты ДНК, могут встраиваться и перемещаться среди хромо-сом, плазмид, умеренных фагов, т.е. обладают потенциальной способностью распростра-няться среди различных видов бактерий.
Понятие о генотипе и фенотипе.
Генотип- вся совокупность имеющихся у организма генов.
Фенотип- совокупность реализованных (т.е. внешних) генетически детерминиро-ванных признаков, т.е. индивидуальное (в определенных условиях внешней среды) прояв-ление генотипа. При изменении условий существования фенотип бактерий изменяется при сохранении генотипа.
Изменчивость у бактерий может быть ненаследуемой (модификационной) и геноти-пической (мутации, рекомбинации).
Временные, наследственно не закрепленные изменения, возникающие как адаптив-ные реакции бактерий на изменения окружающей среды, называются модификациями (чаще - морфологические и биохимические модификации). После устранения причины бактерии реверсируют к исходному фенотипу.
Стандартное проявление модификации- распределение однородной популяции на две или более двух типов- диссоциация. Пример- характер роста на питательных средах: S- (гладкие) колонии, R- (шероховатые) колонии, M- (мукоидные, слизистые) колонии, D- (карликовые) колонии. Диссоциация протекает обычно в направлении S R. Диссоциация сопровождается изменениями биохимических, морфологических, антигенных и вирулент-ных свойств возбудителей.
Мутации- скачкообразные изменения наследственного признака. Могут быть спон-танные и индуцированные, генные (изменения одного гена) и хромосомные (изменения двух или более двух участков хромосомы).
Одновременно у бактерий имеются различные механизмы репарации мутаций, в том числе с использованием ферментов- эндонуклеаз, лигаз, ДНК- полимеразы.
Генетические рекомбинации- изменчивость, связанная с обменом генетической ин-формации. Генетические рекомбинации могут осуществляться путем трансформации, трансдукции, конъюгации, слияния протопластов.
1.Трансформация- захват и поглощение фрагментов чужой ДНК и образование на этой основе рекомбинанта.
2.Трансдукция- перенос генетического материала фагами (умеренными фагами- спе-цифическая трансдукция).
3.Конъюгация- при непосредственном контакте клеток. Контролируется tra (transfer) опероном. Главную роль играют конъюгативные F- плазмиды.
Генетика вирусов.
Геном вирусов содержит или РНК, или ДНК (РНК- и ДНК- вирусы соответственно). Выделяют позитивную (+) РНК, обладающую матричной активностью и соответственно- инфекционными свойствами, и негативную ( - ) РНК, не проявляющую инфекционные свойства, которая для воспроизводства толжна транскрибироваться (превращаться) в +РНК. Механизмы репродукции различных вирусов очень сложные и существенно отли-чаются. Основные их схематические варианты представлены ниже.
1. вирионная (матричная) +РНК  комплементарная -РНК (в рибосомах)  вирион-ная +РНК.
2. - РНК  вирусная (информационная) +РНК  - РНК (формируется на геноме за-раженной клетки).
3. однонитевая ДНК: +ДНК  +ДНК -ДНК  +ДНК -ДНК +ДНК  +ДНК.
4. ретровирусная однонитевая РНК: РНК  ДНК (провирус)  РНК.
5. двунитевая ДНК: разделение нитей ДНК и формирование на каждой комплемен-тарной нити ДНК.
Генофонд вирусов создается и пополняется из четырех основных источников:
двух внутренних (мутации, рекомбинации) и двух внешних (включение в геном ге-нетического материала клетки хозяина, поток генов из других вирусных популяций).
Комплементация- функциональное взаимодействие двух дефектных вирусов, спо-собствующее их репликации и горизонтальной передаче.
Фенотипическое смешивание- при заражении клетки близкородственными вирусами с образованием вирионов с гибридными капсидами, кодируемыми геномами двух виру-сов.
Популяционная изменчивость вирусов связана с двумя разнонаправленными процес-сами - мутациями и селекцией, связанными с внешней средой как индуктором мутаций и фактором стабилизирующего отбора. Гетерогенность вирусных популяций- адаптацион-ный генетический механизм, способствующий пластичности (устойчивости, приспособ-ляемости) популяций, фактор эволюции и сохранения видов во внешней среде.
Генофонд вирусных популяций сохраняется за счет нескольких механизмов:
- восстановления изменчивости за счет мутаций;
- резервирующих механизмов (возможность перехода любых, даже негативных му-таций в следующую генерацию)- комплементация, рекомбинация;
- буферных механизмов (образование дефектных вирусных частиц, иммунных ком-плексов и др.), способствующие сохранению вируса в изменяющихся внешних условиях.






Раскрутка сайта - регистрация в каталогах PageRank Checking Icon Яндекс цитирования